Note; This result means That (graded &) is always an innotational we down 8. div (curt =)= = 0. (xx=)=0 If $\hat{F} = F_1\hat{i} + f_2\hat{j} + F_3\hat{k}$ $\hat{F} = \begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{bmatrix}$ $= \left(\frac{\partial f_3}{\partial y} + \frac{\partial f_2}{\partial t}\right)\hat{i} + \left(\frac{\partial f_1}{\partial t} - \frac{\partial f_3}{\partial x}\right)\hat{j} + \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_3}{\partial y}\right)$ -1. div (curt =) = 5 0 (0 fo) - 0 fo) = 0 Note: This result means that, curl F is wherey a solemordal, weeker. 9. Curl $(\overrightarrow{r}) = \overrightarrow{\nabla} \times (\overrightarrow{\nabla} \times \overrightarrow{r}) = \overrightarrow{\nabla} (\overrightarrow{\nabla} \cdot \overrightarrow{r}) - \overrightarrow{\nabla}$ Let F + Fit + Fit + Fix $\operatorname{curl} \vec{F} = \left(\frac{\partial f}{\partial y} - \frac{\partial f}{\partial z}\right) \hat{i} + \left(\frac{\partial f}{\partial z} - \frac{\partial f}{\partial z}\right) \hat{j} + \left(\frac{\partial f}{\partial z}\right)$ wie (curl F) Co- (16) x J J (1 1) OP 1 PROK $\frac{31}{3}$ $\left(\frac{\partial f_1}{\partial y} - \frac{\partial f_2}{\partial t}\right) \left(\frac{\partial f_1}{\partial t} - \frac{\partial f_3}{\partial x}\right) \left(\frac{\partial f_4}{\partial x} - \frac{\partial f_3}{\partial y}\right)$ \[\left[\frac{24}{9} \left(\frac{24}{24} \left(\frac{24}{24} \left) \frac{24}{3} \left(\frac{24}{25} \left(\frac{24}{25} \left) \frac{5}{5} \right) \right] \cdot \frac{5}{5} $$= \sum_{i} \left[\left(\frac{\partial^{2} F_{i}}{\partial y} + \frac{\partial^{2} F_{i}}{\partial z^{2}} \right) - \left(\frac{\partial^{2} F_{i}}{\partial y^{2}} + \frac{\partial^{2} F_{i}}{\partial z^{2}} \right) \right] \hat{i}$$ $$= \sum_{i} \left[\left(\frac{\partial^{2} F_{i}}{\partial x^{2}} + \frac{\partial^{2} F_{i}}{\partial x^{2}} \right) + \frac{\partial^{2} F_{i}}{\partial x^{2}} \right] - \left(\frac{\partial^{2} F_{i}}{\partial x^{2}} + \frac{\partial^{2} F_{i}}{\partial y^{2}} \right) + \frac{\partial^{2} F_{i}}{\partial y^{2}} \right] \hat{i}$$ $$= \sum_{i} \left[\frac{\partial}{\partial x} \left(\overrightarrow{\nabla} \cdot \overrightarrow{F} \right) - \overrightarrow{\nabla}^{2} F_{i} \right] \hat{i}$$ $$= \sum_{i} \left[\frac{\partial}{\partial x} \left(\overrightarrow{\nabla} \cdot \overrightarrow{F} \right) + \frac{\partial}{\partial y} \left(\overrightarrow{\nabla} \cdot \overrightarrow{F} \right) + \frac{\partial}{\partial y} \left(\overrightarrow{\nabla} \cdot \overrightarrow{F} \right) \right] + \frac{\partial^{2} F_{i}}{\partial y^{2}} \hat{i}$$ $$= \sum_{i} \left[\frac{\partial}{\partial x} \left(\overrightarrow{\nabla} \cdot \overrightarrow{F} \right) - \overrightarrow{\nabla}^{2} F_{i} \right] \hat{i}$$ $$= \sum_{i} \left[\frac{\partial}{\partial x} \left(\overrightarrow{\nabla} \cdot \overrightarrow{F} \right) + \frac{\partial^{2} F_{i}}{\partial y} \left(\overrightarrow{\nabla} \cdot \overrightarrow{F} \right) + \frac{\partial^{2} F_{i}}{\partial y^{2}} \right] \hat{i}$$ $$= \sum_{i} \left[\frac{\partial}{\partial x} \left(\overrightarrow{\nabla} \cdot \overrightarrow{F} \right) - \overrightarrow{\nabla}^{2} F_{i} \right] \hat{i}$$ $$= \sum_{i} \left[\frac{\partial}{\partial x} \left(\overrightarrow{\nabla} \cdot \overrightarrow{F} \right) + \frac{\partial^{2} F_{i}}{\partial y} \right] \hat{i}$$ $$= \sum_{i} \left[\frac{\partial}{\partial x} \left(\overrightarrow{\nabla} \cdot \overrightarrow{F} \right) + \frac{\partial^{2} F_{i}}{\partial y^{2}} \right] \hat{i}$$ $$= \sum_{i} \left[\frac{\partial}{\partial x} \left(\overrightarrow{\nabla} \cdot \overrightarrow{F} \right) + \frac{\partial^{2} F_{i}}{\partial y^{2}} \right] \hat{i}$$ $$= \sum_{i} \left[\frac{\partial}{\partial x} \left(\overrightarrow{\nabla} \cdot \overrightarrow{F} \right) + \frac{\partial^{2} F_{i}}{\partial y^{2}} \right] \hat{i}$$ $$= \sum_{i} \left[\frac{\partial}{\partial x} \left(\overrightarrow{\nabla} \cdot \overrightarrow{F} \right) + \frac{\partial^{2} F_{i}}{\partial y^{2}} \right] \hat{i}$$ $$= \sum_{i} \left[\frac{\partial}{\partial x} \left(\overrightarrow{\nabla} \cdot \overrightarrow{F} \right) + \frac{\partial^{2} F_{i}}{\partial y^{2}} \right] \hat{i}$$ $$= \sum_{i} \left[\frac{\partial}{\partial x} \left(\overrightarrow{\nabla} \cdot \overrightarrow{F} \right) + \frac{\partial^{2} F_{i}}{\partial y^{2}} \right] \hat{i}$$ $$= \sum_{i} \left[\frac{\partial}{\partial x} \left(\overrightarrow{\nabla} \cdot \overrightarrow{F} \right) + \frac{\partial^{2} F_{i}}{\partial y^{2}} \right] \hat{i}$$ $$= \sum_{i} \left[\frac{\partial}{\partial x} \left(\overrightarrow{\nabla} \cdot \overrightarrow{F} \right) + \frac{\partial^{2} F_{i}}{\partial y^{2}} \right] \hat{i}$$ $$= \sum_{i} \left[\frac{\partial}{\partial x} \left(\overrightarrow{\nabla} \cdot \overrightarrow{F} \right) + \frac{\partial^{2} F_{i}}{\partial y^{2}} \right] \hat{i}$$ $$= \sum_{i} \left[\frac{\partial}{\partial x} \left(\overrightarrow{\nabla} \cdot \overrightarrow{F} \right) + \frac{\partial^{2} F_{i}}{\partial y^{2}} \right] \hat{i}$$ $$= \sum_{i} \left[\frac{\partial}{\partial x} \left(\overrightarrow{\nabla} \cdot \overrightarrow{F} \right) + \frac{\partial^{2} F_{i}}{\partial y^{2}} \right] \hat{i}$$ $$= \sum_{i} \left[\frac{\partial}{\partial x} \left(\overrightarrow{\nabla} \cdot \overrightarrow{F} \right) + \frac{\partial^{2} F_{i}}{\partial y^{2}} \right] \hat{i}$$ $$= \sum_{i} \left[\frac{\partial}{\partial x} \left(\overrightarrow{\nabla} \cdot \overrightarrow{F} \right) + \frac{\partial^{2} F_{i}}{\partial y^{2}} \right] \hat{i}$$ $$= \sum_{i} \left[\frac{\partial}{\partial x} \left(\overrightarrow{\nabla} \cdot \overrightarrow{F} \right) + \frac{\partial^{2} F_{i}}{\partial y^{2}} \right] \hat{i}$$ $$= \sum_{i} \left[\frac{\partial}{\partial x} \left(\overrightarrow{\nabla} \cdot \overrightarrow{F} \right) + \frac{\partial^{2} F_{i}}{\partial y^{2}} \right] \hat{i}$$ $$= \sum_{i} \left[\frac{\partial}{\partial x} \left(\overrightarrow{\nabla} \cdot \overrightarrow{F} \right) + \frac{\partial^{2} F_{i}}{\partial y^{2}} \right] \hat{i}$$ $$= \sum_$$ 5. S.T. $\vec{F} = (y^2 - z^2 + 3yz - 2x) \hat{i} + (3xz + 2xy) \hat{j}$ $+ (3xy - 2xz + 2z) \hat{k}$ is both solenoidal 4 innotational. $\vec{\nabla} \cdot \vec{F} = \sum_{i=1}^{n} (y_i^2 + z^2 + 3yz - 2x) = -2 + 2xz + 2x + 2x$ - P. 15 polenosdal, $\vec{\nabla} \times \vec{F} = (37-37) \hat{i} - (39-2t+2t-39) \hat{j} + (32+29-19-32) \hat{k}$ $= 0, \forall (3,9,2)$ $\vec{F} = (37-37) \hat{i} - (39-2t+2t-39) \hat{j} + (32+29-19-32) \hat{k}$ $\vec{F} = (37-37) \hat{i} - (39-2t+2t-39) \hat{j} + (32+29-19-12) \hat{k}$ is irrotational and hence find its scalar potential. Sny Axi = のみ(かわ) Rut I sceler potential of It (b) (b) (1) F = F = F = \(\sum_{\text{200}} \sum_{\text{200}} \sum_{\text{200}} \) 00 = 42+22+2 (int. larticus u.v.t. x) => \$ = xy2+ x2+ a tunution indep. of x-> 0 $\frac{\partial b}{\partial y} = 2 \pi y - t \Rightarrow \phi = x y^2 - y + \epsilon + \epsilon + \epsilon + \epsilon = \epsilon$ 30 = 2x2 + - y + 2+ = = x2 = y2 + 22 + c fun. indep of t - 3 From (1), (2) 4 (3), we get \$= xy2+x2= y2+24c 7. Find the values of expotants a, b, c so that F = (axy + 623) i + (3x2 c2) j + (3x22-9) k man be innotational for these values of F a, b, c find also the scalar potential of F. Sold, Fish irrio tetronal . > Fix Fi = 0 =) (-1+c) î-(32=3622) ĵ+(6x-ax) k = 0 => (C-1=0, 322 (1-b)=0, x (b-c)=0 Using those values of a, b, c, $\vec{F} = (6xy + 2^3) \hat{i} + (37 + 4) \hat{j} + (37 + 2) \hat{k}'$ It of be The scalar potential of F, F= \$\forall p デーマヤー つかいナ でから サークタ パ 11. 20 年 イスタチャー、 では = 37年 」 コカーン Integrating particilly u.v.t. the concerned vanilly | φ = 37 by + 7 t c that indep of 2 | φ = (37 by - yt + a that indep of y | φ = (37 by - yt + a that indep of y | φ = (37 by - yt + a that indep of y .. He get \$= 3x2y+x23-y2+c 13. It n = [p], Where p is the line, is, of (7, 1/2) 4. v. c. origin, P. T. i) \$\forall f(n) = \frac{f'(n)}{p} p and (i) \$7+(n) = \f''(n) (+ \frac{1}{2} f'(n)) $= \sum_{i=1}^{n} f(n) = \sum_{i=1}^{n} \frac{\partial}{\partial n} f(n) \frac{\partial n}{\partial n}$ $f'(n) \sum_{i=1}^{n} \frac{\partial n}{\partial x_i} = f'(n) \sum_{i=1}^{n} \frac{\partial n}{\partial x_i} = f'(n) \sum_{i=1}^{n} \frac{\partial n}{\partial x_i}.$ ii) $$\overrightarrow{\nabla}^2 + (n) = \overrightarrow{\nabla} \cdot \overrightarrow{\nabla} + (n) = \overrightarrow{\nabla} \cdot (\frac{1}{n}) \overrightarrow{n}$$ $$\Rightarrow = f(n)$$ $$\Rightarrow = \overrightarrow{\nabla} \cdot (\frac{1}{n}) \cdot \overrightarrow{n} + \frac{1}{n} \cdot (n) \cdot \overrightarrow{n} + \frac{1}{n} \cdot (n)$$ $$\Rightarrow = \underbrace{\nabla} \cdot (\frac{1}{n}) \cdot (n) - f(n)}{\nabla \cdot (n) \cdot (n) \cdot (n)} \overrightarrow{\nabla} \cdot (n) \cdot \overrightarrow{n} + \frac{1}{n} \cdot \frac{1}{n} \cdot (n)$$ $$= \underbrace{\nabla} \cdot (n) \cdot (n) - f(n)}{\nabla \cdot (n) \cdot (n) \cdot (n) \cdot (n)} + \underbrace{\nabla} \cdot (n) \cdot (n) \cdot (n) \cdot (n) \cdot (n)$$ $$= \underbrace{\nabla} \cdot (n) \cdot (n) + \underbrace{\nabla} \cdot (n) (n)$$ for all values of f(m). — (2) from (1) of (2) we get of (n) no in the form of in moteliance if fine) = \frac{c}{n^3} ## LINE INTEGRAL OF VECTOR POINT FUNCTIONS Let $\overline{F}(x, y, z)$ be a vector point function defined at all points in some region of space and let C be a curve in that region. Let the position vectors of two neighbouring points P and Q on C be \overline{r} and $\overline{r} + \Delta \overline{r}$. Then $\overline{PQ} = \Delta \overline{r}$. If \overline{F} acts at P in a direction that makes an angle θ with \overline{PQ} , then $\overline{F} \cdot \Delta \overline{r} = F(\Delta r) \cos \theta$ In the limit, $\overline{F} \cdot d\overline{r} = F dr \cos \theta$. **Note** Physically $\overline{F} \cdot d\overline{r}$ means the elemental work done by the force \overline{F} through the displacement $d\overline{r}$. Now the integral $\int_C \overline{F} \cdot d\overline{r}$ is defined as the line integral of \overline{F} along the curve C. Since $\int_C \overline{F} \cdot d\overline{r} = \int_C F \cos \theta dr$, it is also called the line integral of the tangential component of \overline{F} along C. **Note** (1) $\int_{A}^{B} \overline{F} \cdot d\overline{r}$ depends not only on the curve C but also on the terminal points A and B. (2) Physically $\int_{A \atop (C)}^{B} \overline{F} \cdot d\overline{r}$ denotes the total work done by the force \overline{F} in displacing a particle from A to B along the curve C. - (3) If the value of $\int_A^B \overline{F} \cdot d\overline{r}$ does not depend on the curve C, but only on the terminal points A and B, \overline{F} is called a *Conservative vector*. Similarly, if the work done by a force \overline{F} in displacing a particle from A to B does not depend on the curve along which the particle gets displaced but only on A and B, the force \overline{F} is called a *Conservative force*. - (4) If the path of integration C is a closed curve, the line integral is denoted as $\oint \overline{F} \cdot d\overline{r}$. (5) When $$\overline{F} = F_1 \overline{i} + F_2 \overline{j} + F_3 \overline{k}$$, $$\int_C \overline{F} \cdot d\overline{r} = \int_C (F_1 \overline{i} + F_2 \overline{j} + F_3 \overline{k}) \cdot (dx \overline{i} + dy \overline{j} + dz \overline{k})$$ $$(\because \overline{r} = x \overline{i} + y \overline{j} + z \overline{k})$$ $$= \int_C (F_1 dx + F_2 dy + F_3 dz), \text{ which is evaluated as in the problems in Chapter 1.}$$ (6) = $\int_C \phi dr$, where ϕ is a scalar point function and $\int_C \overline{F} \times d\overline{r}$ are also line integrals. ## Condition for \overline{F} to be Conservative If \overline{F} is an irrotational vector, it is conservative. **Proof:** Since \overline{F} is irrotational, it can be expressed as $\nabla \phi$, i.e., $\overline{F} = \nabla \phi$ $$\int_{A}^{R} \overline{F} \cdot d\overline{r} = \int_{A}^{R} \nabla \phi \cdot d\overline{r}$$ $$= \int_{A}^{B} \left(\frac{\partial \phi}{\partial x} \, \tilde{i} + \frac{\partial \phi}{\partial y} \, \tilde{j} + \frac{\partial \phi}{\partial z} \, \tilde{k} \right) \cdot (dx \, \tilde{i} + dy \, \tilde{j} + dz \, \tilde{k})$$ $$= \int_{A}^{B} \left(\frac{\partial \phi}{\partial x} \, dx + \frac{\partial \phi}{\partial y} \, dy + \frac{\partial \phi}{\partial z} \, dz \right)$$ $$= \int_{A}^{B} d\phi$$ $$= [\phi]_{A}^{B}, \text{ whatever be the path of integration}$$ $$= \phi(B) - \phi(A)$$ $\therefore \vec{F}$ is conservative. Note If \overline{F} is irrotational (and hence conservative) and C is a closed curve, then $\oint \overline{F} \cdot \mathrm{d}\overline{r} = 0.$ $[\cdot, \phi(A) = \phi(B)$, as A and B coincide] ## Surface Integral of Vector Point Function Let S be a two sided surface, one side of which is considered arbitrarily as the positive side. Let \overline{F} be a vector point function defined at all points of S. Let dS be the typical elemental surface area in S surrounding the point (x, y, z). Let \hat{n} be the unit vector normal to the surface S at (x, y, z) drawn in the positive side (or outward direction) Fig. 2.3 Let θ be the angle between \overline{F} and \hat{n} . \therefore The normal component of $\overline{F} = \overline{F} \cdot \hat{n} = F \cos \theta$ The integral of this normal component through the elemental surface area dS over the surface S is called the surface integral of \overline{F} over S and denoted as $\int_{0}^{\infty} F \cos \theta \, dS \text{ or } \int_{0}^{\infty} \overline{F} \cdot \hat{n} \, dS.$ If $d\overline{S}$ is a vector whose magnitude is dS and whose direction is that of \hat{n} , then $d\overline{S} = \hat{n} dS$ $\therefore \int_{S} \overline{F} \cdot \hat{n} \, dS \text{ can also be written as } \int_{S} \overline{F} \cdot d\overline{S}.$ Note (1) If S is a closed surface, the outer surface is usually chosen as the positive side. - (2) $\int \phi \, d\overline{S}$ and $\int \overline{F} \times d\overline{S}$, where ϕ is a scalar point function are also surface integrals. - (3) When evaluating $\int \overline{F} \cdot \hat{n} d\overline{S}$, the surface integral is first expressed in the scalar form and then evaluated as in problems in Chapter 1. To evaluate a surface integral in the scalar form, we convert it into a double integral and then evaluate. Hence the surface integral $\int \overline{F} \cdot d\overline{S}$ is also denoted as $$\iint_{S} \overline{F} \cdot d\overline{S}$$ ٠. ## Worked Example 2(c) Evaluate $\int \phi d\overline{r}$, where C is the curve x = t, $y = t^2$, z = (1 - t) and $\phi = x^2 y (1 + z)$ from t = 0 to t = 1. $$\bar{r} = x\bar{i} + y\bar{j} + z\bar{k}$$ $$d\bar{r} = dx\bar{i} + dy\bar{j} + dz\bar{k}$$ Hence the given line integral $I = \int_C x^2 y (1 + z) (dx \bar{i} + dy \bar{j} + dz \bar{k})$ $= \bar{i} \int_C x^2 y(1+z) dx + \bar{j} \int_C x^2 y(1+z) dy + \bar{k} \int_C x^2 y(1+z) dz$ $= \bar{i} \int_{0}^{1} t^{4} (2-t) dt + \bar{j} \int_{0}^{1} t^{4} (2-t) 2t dt + \bar{k} \int_{0}^{1} t^{4} (2-t) (-dt)$ $= \bar{i} \left[2 \frac{t^5}{5} - \frac{t^6}{6} \right]_0^1 + \bar{j} \left[4 \frac{t^6}{6} - 2 \frac{t^7}{7} \right]_0^1 + \bar{k} \left[-2 \frac{t^5}{5} + \frac{t^6}{6} \right]_0^1$ $=\frac{7}{30}\bar{i}+\frac{8}{21}\bar{j}-\frac{7}{30}\bar{k}$. **Example 2** If $\overline{F} = xy\overline{i} - z\overline{j} + x^2\overline{k}$, evaluate $\int \overline{F} \times d\overline{r}$, where C is the curve $x = t^2$, y = 2t, $z = t^3$ from (0, 0, 0) to (1, 2, 1). $$\overline{F} \times d\overline{r} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ xy & -z & x^2 \\ dx & dy & dz \end{vmatrix}$$ $$= -(z dz + x^2 dy)\overline{i} - (xy dz - x^2 dx)\overline{j} + (xy dy + zdx)\overline{k}$$.. The given line integral $$= \int_{C} \left[-(z dz + x^{2} dy) \bar{i} - (xy dz - x^{2} dx) \bar{j} + (xy dy + z dx) \bar{k} \right] = \int_{C} \left[-(t^{3} \cdot 3t^{2} \cdot + t^{4} \cdot 2) dt \, \bar{i} - (2t^{3} \cdot 3t^{2} - t^{4} \cdot 2t) dt \bar{j} + (2t^{3} \cdot 2 + t^{3} 2t) dt \bar{k} \right] = \int_{C} \left[-(t^{3} \cdot 3t^{2} \cdot + t^{4} \cdot 2) dt \, \bar{i} - (2t^{3} \cdot 3t^{2} - t^{4} \cdot 2t) dt \, \bar{j} + (2t^{3} \cdot 2 + t^{3} 2t) dt \bar{k} \right] = \int_{C} \left[-(t^{3} \cdot 3t^{2} \cdot + t^{4} \cdot 2t) dt \, \bar{i} - (2t^{3} \cdot 3t^{2} - t^{4} \cdot 2t) dt \, \bar{j} + (2t^{3} \cdot 2 + t^{3} 2t) dt \bar{k} \right] = \int_{C} \left[-(t^{3} \cdot 3t^{2} \cdot + t^{4} \cdot 2t) dt \, \bar{i} - (2t^{3} \cdot 3t^{2} - t^{4} \cdot 2t) dt \, \bar{j} + (2t^{3} \cdot 2 + t^{3} 2t) dt \, \bar{k} \right] = \int_{C} \left[-(t^{3} \cdot 3t^{2} \cdot + t^{4} \cdot 2t) dt \, \bar{i} - (2t^{3} \cdot 3t^{2} - t^{4} \cdot 2t) dt \, \bar{j} + (2t^{3} \cdot 2 + t^{3} 2t) dt \, \bar{k} \right] = -\bar{i} \int_{C} \left[-(t^{3} \cdot 3t^{2} \cdot + t^{4} \cdot 2) dt \, \bar{i} - (2t^{3} \cdot 3t^{2} - t^{4} \cdot 2t) dt \, \bar{j} + (2t^{3} \cdot 2 + t^{3} 2t) dt \, \bar{k} \right] = -\bar{i} \int_{C} \left[-(t^{3} \cdot 3t^{2} \cdot + t^{4} \cdot 2) dt \, \bar{i} - (2t^{3} \cdot 3t^{2} - t^{4} \cdot 2t) dt \, \bar{j} + (2t^{3} \cdot 2 + t^{3} 2t) dt \, \bar{k} \right] = -\bar{i} \int_{C} \left[-(t^{3} \cdot 3t^{2} \cdot + t^{4} \cdot 2) dt \, \bar{i} - (2t^{3} \cdot 3t^{2} - t^{4} \cdot 2t) dt \, \bar{j} + (2t^{3} \cdot 2 + t^{3} 2t) dt \, \bar{k} \right] = -\bar{i} \int_{C} \left[-(t^{3} \cdot 3t^{2} \cdot + t^{4} \cdot 2) dt \, \bar{i} - (2t^{3} \cdot 3t^{2} - t^{4} \cdot 2t) dt \, \bar{j} \right] = -\bar{i} \int_{C} \left[-(t^{3} \cdot 3t^{2} \cdot + t^{4} \cdot 2) dt \, \bar{i} - (2t^{3} \cdot 3t^{2} - t^{4} \cdot 2t) dt \, \bar{k} \right]$$ $$= -\bar{i} \int_{C} \left[-(t^{3} \cdot 3t^{2} \cdot + t^{4} \cdot 2) dt \, \bar{i} - (2t^{3} \cdot 3t^{2} - t^{4} \cdot 2t) dt \, \bar{i} \right]$$ $$= -\bar{i} \int_{C} \left[-(t^{3} \cdot 3t^{2} \cdot + t^{4} \cdot 2) dt \, \bar{i} - (2t^{3} \cdot 3t^{2} - t^{4} \cdot 2t) dt \, \bar{i} + (2t^{3} \cdot 2 \cdot t^{4} \cdot 2) dt \, \bar{i} \right]$$ $$= -\bar{i} \int_{C} \left[-(t^{3} \cdot 3t^{2} \cdot 2 \cdot t^{4} \cdot 2) dt \, \bar{i} - (2t^{3} \cdot 3t^{2} - t^{4} \cdot 2t) dt \, \bar{i} + (2t^{3} \cdot 2 \cdot t^{4} \cdot 2) dt \, \bar{i} \right]$$ $$= -\bar{i} \int_{C} \left[-(t^{3} \cdot 3t^{2} \cdot 2 \cdot t^{4} \cdot 2) dt \, \bar{i} - (t^{3} \cdot 3t^{2} \cdot 2 \cdot t^{4} \cdot 2 \cdot t^{4} \right) dt \, \bar{i} + (t^{3} \cdot 3t^{2} \cdot 2 \cdot t^{4} \cdot 2) dt \, \bar{i} \right]$$ $$= -\bar{i} \int_{C} \left[-(t^{3} \cdot 3t^{2} \cdot 2 \cdot t^{4} \cdot 2) dt \, \bar{i} - ($$ **Example 3** Find the work done when a force $\overline{F} = (x^2 - y^2 + x)\overline{i} - (2xy + y)\overline{j}$ displaces a particle in the xy-plane from (0, 0) to (1, 1) along the curve (i) y = x, (ii) $y^2 = x$. Comment on the answer. W = Work done by $$\overline{F} = \int_C \overline{F} \cdot d\overline{r}$$ $$= \int_C [(x^2 - y^2 + x)\overline{i} - (2xy + y)\overline{j}] \cdot (dx\overline{i} + dy\overline{j} + dz\overline{k})$$ $$= \int_C [(x^2 - y^2 + x) dx - (2xy + y)dy]$$ Case (i) C is the line y = x. $$W_{1} = \int_{\substack{y=x \\ (dy=dx)}} [(x^{2} - y^{2} + x) dx - (2xy + y) dy]$$ $$= \int_{0}^{1} (-2x^{2}) dx$$ $$= -\frac{2}{3}$$ Case (ii): C is the curve $y^2 = x$. $$W_2 = \int_{\substack{x = y^2 \\ (dx = 2y \, dy)}} [(x^2 - y^2 + x)dx - (2xy + y) \, dy]$$ $$= \int_{0}^{1} (2y^5 - 2y^3 - y) \, dy$$ $$= -\frac{2}{3}$$ **Comment** As the works done by the force, when it moves the particle along two different paths from (0, 0) to (1, 1), are equal, the force may be a conservative force. In fact, \overline{F} is a conservative force, as \overline{F} is irrotational. It can be verified that the work done by \overline{F} when it moves the particle from (0, 0) to (1, 1) along any other path (such as $x^2 = y$) is also equal to $-\frac{2}{3}$. **Example 4** Find the work done by the force $\vec{F} = z\vec{i} + x\vec{j} + y\vec{k}$, when it moves a particle along the arc of the curve $\vec{r} = \cos t\vec{i} + \sin t\vec{j} + t\vec{k}$ from t = 0 to $t = 2\pi$. From the vector equation of the curve C, we get the parametric equations of the curve as $x = \cos t$, $y = \sin t$, z = t. Work done by $$\overline{F} = \int_C \overline{F} \cdot d\overline{r}$$ $$= \int_C (z\overline{i} + x\overline{j} + y\overline{k}) \cdot (dx\overline{i} + dy\overline{j} + dz\overline{k})$$ $$= \int_C (z dx + x dy + y dz)$$ $$= \int_C [t (-\sin t) + \cos^2 t + \sin t]dt$$ $$= \left[t \cos t - \sin t + \frac{1}{2}\left(t + \frac{\sin 2t}{2}\right) - \cos t\right]_0^{2\pi}$$ $$= (2\pi + \pi - 1) - (-1)$$ $$= 3\pi$$ **Example 5** Evaluate $\oint_C \overline{F} \cdot d\overline{r}$, where $\overline{F} = (\sin y)\overline{i} + x(1 + \cos y)\overline{j} + z\overline{k}$ and C is the circle $x^2 + y^2 = a^2$ in the xy-plane. Given integral $$= \int_C [\sin y_{\bar{i}} + x(1 + \cos y)_{\bar{j}} + z_{\bar{k}}] \cdot (dx_{\bar{i}} + dy_{\bar{j}} + dz_{\bar{k}})$$ $$= \int_C [\sin y \, dx + x(1 + \cos y) \, dy + z \, dz]$$ $$= \int_{z=0}^{z+y^2 = a^2} [\sin y \, dx + x(1 + \cos y) \, dy]$$ $$= \int_{x^2 + y^2 = a^2} [\sin y \, dx + x(1 + \cos y) \, dy]$$ Since C is a closed curve, we use the parametric equations of C, namely $x = a \cos \theta$, $y = a \sin \theta$ and the parameter θ as the variable of integration. To move around the circle C once completely, θ varies from 0 to 2π . Now, given integral $$= \int [(\sin y \, dx + x \cos y \, dy) + x \, dy]$$ $= \int [d(x \sin y) + x \, dy]$ $= \int_{0}^{2\pi} \{d [a \cos \theta \cdot \sin (a \sin \theta)] + a^{2} \cos^{2} \theta \, d\theta\}$ $$= \left[a \cos \theta \cdot \sin \left(a \sin \theta \right) + \frac{a^2}{2} \left(\theta + \frac{\sin 2\theta}{2} \right) \right]_0^{2\pi}$$ $$= \pi a^2$$ **Example 6** Find the work done by the force $\overline{F} = (2xy + z^3)\overline{i} + x^2\overline{j} + 3xz^2\overline{k}$, when it moves a particle from (1, -2, 1) to (3, 1, 4) along any path. To evaluate the work done by a force, the equation of the path and the terminal points must be given. As the equation of the path is not given in this problem, we guess that the given force \overline{F} is conservative. Let us verify whether \overline{F} is conservative, i. e. irrotational. $$\nabla \times \overline{F} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2xy + z^3 & x^2 & 3xz^2 \end{vmatrix}$$ $$= (0 - 0)\overline{i} - (3z^2 - 3z^2)\overline{j} + (2x - 2x)\overline{k}$$ $$= 0$$ - $\therefore \overline{F}$ is irrotational and hence conservative. - \therefore Work done by \overline{F} depends only on the terminal points. Since \overline{F} is irrotational, let $\overline{F} = \nabla \phi$. It is easily found that $\phi = x^2y + z^3x + c$. Work done by $$\overline{F} = \int_{(1,-2,1)}^{(3,1,4)} \overline{F} \cdot d\overline{r}$$ $$= \int_{(1,-2,1)}^{(3,1,4)} \nabla \phi \cdot d\overline{r}$$ $$= \int_{(1,-2,1)}^{(3,1,4)} d\phi$$ $$= \int_{(1,-2,1)}^{(3,1,4)} = \left[\phi(x,y,z)\right]_{(1,-2,1)}^{(3,1,4)}$$ $$= \left[x^2y + z^2x + c\right]_{(1,-2,1)}^{(3,1,4)}$$ $$= (201 + c) - (-1 + c)$$ $$= 202.$$ Example 7 Find the work done by the force $\overline{F} = y(3x^2y - z^2)\overline{i} + x(2x^2y - z^2)\overline{j}$ $-2xyz\bar{k}$, when it moves a particle around a closed curve C. To evaluate the work done by a force, the equation of the path C and the terminal points must be given. Since C is a closed curve and the particle moves around this curve once completely, any point (x_0, y_0, z_0) can be taken as the initial as well as the final point. But the equation of C is not given. Hence we guess that the given force \overline{F} is conservative, i.e. irrotational. Actually it is so, as verified below. $$\nabla \times \overline{F} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 3y^2x^2 - yz^2 & 2x^3y - z^2x & -2xyz \end{vmatrix}$$ $$= (-2xz + 2xz)\overline{i} - (-2yz + 2yz)\overline{j} + (6x^2y - z^2 - 6x^2y + z^2)\overline{k}$$ $$= 0$$ Since \overline{F} is irrotational, let $\overline{F} = \nabla \phi$. $$\therefore \text{ Work done by } \overline{F} = \oint_C \overline{F} \cdot d\overline{r}$$ $$= \oint_C \nabla \phi \cdot d\overline{r}$$ $$= \int_C (x_0, y_0, z_0)$$ $$= \int_{(x_0, y_0, z_0)} d\phi$$ $$= (x_0, y_0, z_0)$$ $$= \phi(x_0, y_0, z_0) - \phi(x_0, y_0, z_0)$$ $$= 0$$ **Example 8** Evaluate $\iint_{S} \overline{A} \cdot d\overline{S}$, where $\overline{A} = 12 x^{2}y\overline{i} - 3yz\overline{j} + 2z\overline{k}$ and S is the portion of the plane x + y + z = 1 included in the first octant. Given integral $I = \iint_S \overline{A} \cdot \hat{n} dS$, where \hat{n} is the unit normal to the surface S given by $$\phi = c,$$ i.e. $x + y + z = 1$ $$\phi = x + y + z$$ $$\nabla \phi = \overline{i} + \overline{j} + \overline{k}$$ $$\hat{n} = \frac{1}{\sqrt{3}} (\overline{i} + \overline{j} + \overline{k})$$ Fig. 2.4 $$I = \iint_{S} (12x^{2}y\overline{i} - 3yz\overline{j} + 2z\overline{k}) \cdot \frac{1}{\sqrt{3}} (\overline{i} + \overline{j} + \overline{k}) dS$$ $$= \frac{1}{\sqrt{3}} \iint_{S} (12x^{2}y - 3yz + 2z) dS$$ To convert the surface integral as a double integral, we project the surface S on the xoy - plane. Then $dS \cos \gamma = dA$, where γ is the angle between the surface S and the xoy - plane, i.e. the angle between \hat{n} and \bar{k} . \therefore $\cos \gamma = \hat{n} \cdot \bar{k}$ $$dS = \frac{dA}{\hat{n} \cdot \vec{k}} = \frac{dx \, dy}{\frac{1}{\sqrt{3}}}$$ $$I = \frac{1}{\sqrt{3}} \iint_{\Delta OAB} (12x^2y - 3yz + 2z) \frac{dx \, dy}{\frac{1}{\sqrt{3}}}$$ [: the projection of S on the xoy plane is $\triangle OAB$] $$= \iint_{\Delta OAB} \{12x^2y - 3y(1-x-y) + 2(1-x-y)\} dx dy$$ Note To express the integrand as a function of x and y only, z is expressed as a function of x and y from the equation of S. $$I = \int_{0}^{1} \int_{0}^{1-y} (12x^{2}y + 3xy + 3y^{2} - 5y - 2x + 2) dx dy$$ $$= \int_{0}^{1} \left[4y(1-y)^{3} + \frac{3y}{2}(1-y)^{2} + 3y^{2}(1-y) - 5y(1-y) - (1-y)^{2} + 2(1-y) \right] dy$$ $$= \frac{49}{120}$$ **Example 9** Evaluate $\iint_S \overline{F} \cdot d\overline{S}$, where $\overline{F} = yz\overline{i} + zx\overline{j} + xy\overline{k}$ and S is the part of the sphere $x^2 + y^2 + z^2 = 1$ that lies in the first octant. Given integral $I = \iint_S \overline{F} \cdot \hat{n} dS$, where \hat{n} is the unit normal to the surface S given by $$\phi = c \text{ i.e.}$$ $x^2 + y^2 + z^2 = 1.$ $\phi = x^2 + y^2 + z^2$ $$\nabla \phi = 2x\bar{i} + 2y\bar{j} + 2z\bar{k}$$ ٠. $$\hat{n} = \frac{2x\bar{i} + 2y\bar{j} + 2z\bar{k}}{\sqrt{4(x^2 + y^2 + z^2)}}$$ $$= \frac{2(x\bar{i} + y\bar{j} + z\bar{k})}{\sqrt{4 \times 1}} \quad [\because \text{ the point } (x, y, z) \text{ lies on } S]$$ $$= x\bar{i} + y\bar{j} + z\bar{k}.$$ $$I = \iint_{S} (yz\bar{i} + zx\bar{j} + xy\bar{k}) \cdot (x\bar{i} + y\bar{j} + z\bar{k}) dS$$ $$= \iint_{S} 3xyz \, dS$$ $$= \iint_{R} 3xyz \, \frac{dx \, dy}{\hat{n} \cdot \hat{k}},$$ where R is the region in the xy-plane bounded by the circle $x^2 + y^2 = 1$ and lying in the first quadrant. $$I = \iint\limits_R 3xyz \, \frac{\mathrm{d}x \, \mathrm{d}y}{z}$$ $$= \int_{0}^{1} \int_{0}^{\sqrt{1-y^2}} 3xy \, dx \, dy$$ $$= \int_{0}^{1} 3y \left(\frac{x^{2}}{2}\right)_{0}^{\sqrt{1-y^{2}}} dy$$ $$= \frac{3}{2} \int_{0}^{1} y (1 - y^{2}) dy$$ $$= \frac{3}{2} \left(\frac{y^2}{2} - \frac{y^4}{4} \right)_0^1$$ $$=\frac{3}{8}$$ Fig. 2.5